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Galerkin schemes for the computation of the eigenvalues of both regular and singular 
Sturm-Liouville problems are compared to the sincGalerkin method. Contrasted are 
numerical results as well as qualitative features, The schemes discussed include finite element, 
spectral, and collocation. The equivalence of the spectral method with sine basis functions 
to the sine-collocation scheme provides this technique with many distinctive features. 
Highlighted among these features through the course of the computational comparisons is its 
ease of implementation, its exponential accuracy in the presence of singularities and its 
all-around versatility. % 1990 Academic Press, Inc. 

I. INTRODUCTION 

The computation of the eigenvalues of the Sturm-Liouville problem 

Lu(x) = -d(x) + q(x) u(x) = ip(x) u(x), a<x<b 
(1.1) 

u(a) = u(b) = 0 

can be accomplished in many ways. One of the most commonly used techniques is 
a Galerkin method. This broad category of methods is generally considered to 
include spectral, finite element, and collocation schemes, the type being determined 
by the basis functions chosen. In a terse review, a Galerkin scheme may be sum- 
marized as follows. On the interval (c, d) let {fi} denote a complete orthonormal 
set in the Hilbert space H(c, d). Denote by ui, the solution of (1.1). Let x be a “nice” 
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map of (a, b) onto (c, d) and put Ti =f, 0 x. Denote an approximate eigensolution of 
(1.1) by 

U,(x)= g 4(4> (1.2) 
i=O 

where the ci are found by solving 

WJ,-WJ,,jl)=O, j=O, 1, 2, . . . . M, (1.3) 

and (*, * ) is the inner product in H(a, b). 
A simple point of view is to refer to (1.3) as a spectral method if the basis func- 

tions (yi} are defined globally on the interval (a, 6) and as a finite element method 
if they are compactly supported. If point evaluation is used in (1.3) the method is 
referred to as collocation. Standard basis functions used in finite element methods 
as well as a description of the collocation method are found in [2, 81. An excellent 
survey of the role of the classical sets of orthogonal functions used in spectral 
methods is found in [9]. 

The qualities of the Galerkin scheme depend on the set (fi} as well as the map 
x. Once a set {fi} has been selected, the choice of a map x can be based on a wide 
range of considerations. Near the top of the hierarchy of these considerations is the 
fact that the mapped basis functions should preserve (and if possible, enhance) the 
approximating properties of the set {fi}. 

Depending on the nature of the coefficient functions q and p, each of the 
aforementioned schemes has its own particular advantages when applied to (1.1). 
Specific advantages sought include having high accuracy, having a rapid con- 
vergence rate, being easy to implement, and requiring a small amount of modilica- 
tion when q and p are changed. For example, an appropriately chosen spectral or 
finite element scheme typically is a more accurate method than is a collocation 
scheme whereas the latter is usually simpler to implement than are the former. For 
any one specific problem( l.l), there are equations where the previous sentence can 
be computationally misrepresentative (see Comparison 3.1 in Section III). On the 
other hand, one is often forced to sacrifice simplicity due to the inherent difficulties 
of a problem. This is frequently associated with problems that have singular coef- 
ficients and/or problems on infinite domains. These are called singular Sturm- 
Liouville problems (otherwise they are called regular). What is often desired in 
practice is a method that has (i) a known error estimate on a wide class of 
problems, (ii) a user-friendly mode of implementation relative to varying (1.1) 
(either changing q and p and/or the domain (a, b)), and (iii) a rate of convergence, 
sufficiently rapid, so that the desired accuracy is obtained within a reasonable 
(computationally measured) amount of time. 

In [12] a collocation scheme was developed to approximate the eigenvalues of 
the Sturm-Liouville problem (1.1). Therein it was shown that the convergence rate 
of this sine-collocation method is exp( - rcJ;i?) (K > 0), where 2M+ 1 sine basis 
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elements are employed in the collocation scheme. This convergence rate was estab- 
lished for both the finite interval and the semi-infinite interval, and for non-negative 
coefficient functions q and p. The convergence rate is maintained for problems 
having regular singular points at a and/or 6. In the case that the latter situation 
gives rise to eigenfunctions with algebraic or logarithmic singularities (at a and/or 
b), the previously cited convergence rate persists. Comparison 3.4 exhibits a case 
where a small change in the coefficient function q in (1.1) perturbs the eigen- 
functions in such a fashion that these eigenfunctions change from entire to singular 
functions. It is perhaps in the case of singular problems where one of the strongest 
features of this sine-collocation scheme is exhibited. 

Another feature of the sine-collocation method is that the discrete system which 
arises is the same as that for a spectral method using sine basis functions. Thus the 
sine-collocation method and the sine-Galerkin method are equivalent in this setting. 
As such, this method exhibits collectively many of the advantages that are typically 
associated with either a spectral or collocation method. This non-classical set of 
orthogonal basis functions has many desirable properties [20]. 

The sine-collocation scheme has the earlier mentioned properties ((i)-(iii) 
above) that a prospective user seeks. The purpose of the present paper is to explore 
these properties of the sine function method in a comparative fashion. In an 
attempt not to prejudicially represent the sine method, problems from the literature 
have been selected that have been discussed by other authors. Other problems have 
been chosen wherein the eigenvalues of (1.1) have been computed by different 
methods and fully reported. When the sine method is implemented on (1.1) it is 
implemented on this specific (Liouville normal) form of the Sturm-Liouville 
problem (as opposed to its various equivalent forms: standard or self-adjoint). This 
choice was originally motivated by implementing the method on the radial 
Schrodinger equation and it appears in this case that (1.1) is the form of the 
equation most frequently cited. These various forms are all easily obtained from one 
another by a change of variables. The Liouville normal form produces a symmetric 
discrete approximating system whereas the standard fom of (1.1) typically does not. 
In the case that a competing numerical method is better suited to be applied to the 
SturmPLiouville problem in its standard form, that will be done (see Comparison 
3.2 in Section III). 

In all cases the numerical method applied to any of the forms of (1.1) gives rise 
to an algebraic eigenvalue problem 

AC = pBc, (1.4) 

where the matrices A and B are defined by the particular methodology. Within each 
comparison the distinguishing properties of these matrices (symmetry, positive 
definiteness, bandedness, conditioning, ease of assembly, etc.) are identified. As a 
case in point here, it is often easy to argue that a banded matrix is to be more 
highly regarded than is a full matrix (given that assembly is roughly the same 
amount of work). However, if the QR algorithm is applied to the problem (1.4) 
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then the sparse structure is quickly lost. Comparisons 3.3 and 3.4 point to a 
situation where a banded matrix is not necessarily more desirable than a full 
matrix. Comparisons 3.4 and 3.5 further illustrate some of the considerations that 
should go into the choice of a map. Comparison 3.5 also includes a discussion of 
the special features associated with the discrete sine-collocation system. In 
particular this comparison takes advantage of problem symmetry in a manner that 
differs from the point of view in [lo]. The matrix splitting herein described could 
also prove useful in other approximating schemes whose discrete system (1.4) has 
Toeplitz structure. 

Section II briefly reviews the sine-collocation method and the associated error 
estimates. The commonly used maps for sine methods are described and illustrated. 
Section III includes the comparisons previously discussed. The essential features of 
each method are included in the comparisons. 

The sine-collocation method illustrates a great versatility on all of the examples 
in Section III. While for a given problem a better method can often be found, as an 
all purpose eigenvalue routine it performs reliably and predictably on a wide class 
of problems. This robustness, coupled with ease of implementation, exponential 
convergence rate, and a matrix splitting (described in Comparison 3.5) make this 
method a serious competitor with other discretization techniques for the computa- 
tion of the eigenvalues for Sturm-Liouville problems. 

II. SINC FUNCTION APPROXIMATION 

The sine function is delined by 

sin(7ct) 
sinc( t) = 71t, lE(--co, 03). 

If the function w is defined on the whole real line, then for h > 0 the series 

C(w, h)(t) = f w(kh) W h)(t), 
k= -oc> 

where 

(2.1) 

(2.2) 

(2.3) 

is called the Whittaker cardinal expansion of w whenever the series converges. An 
extensive survey of the properties of (2.2) is contained in [20]. The properties 
necessary for the development of the sine-collocation method will be summarized 
here. 

The approximation of a function w by its Whittaker cardinal expansion is 
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described for the class of functions in B(S,). This family is defined as follows. The 
function w is in B(S,) if w is analytic in the infinite strip 

s(/= {t+is: ISI <d<rc/21 (2.4) 

and satisfies both of 

5 d Iw(t+is)/ ds-+O, t-+ fx (2.5) 
-d 

and 

N,(w)2 lim 
I JI (Iw(t+is)12+Iw(t-is)12)dt<co. (2.6) .r+& --3c 

An analysis of the error incurred in approximating a function w E B(S,) by its 
cardinal expansion is found in [19]. When w E B(S,) and w and d2w/dt2 are 
approximated by 

CM,N(W h)(t) = f WW) S(k h)(t) (2.7) 
k= -,&g 

and 

k= -M 
(2.8) 

respectively, then (2.7) converges to IV and (2.8) converges to d2w/dt2. For practical 
computation assume there are positive constants a, b, and C so that 

(2.9) 

If vv E B( S,), (2.9) is satisfied, and the selections 

and 

h = (zd/(aM))“2 (2.10) 

N= II Ma (2.11) 

are made, then, as shown in [ 151 the L2-error of the second derivative satisfies 

II d2w/dt2 - (d2/dt2)(C,, ,Jw, A))112 < KM5j4 exp( - (ndotM)‘l*), (2.12) 

where K is a positive constant depending on w and d. 
The Sturm-Liouville problem (1.1) was posed on the arbitrary interval (a, h). 

Because the error estimate for the eigenvalues is given on the whole real line, when 
(a, 6) is not the real line the problem must be formulated for this different interval. 
The following definition is needed in mapping the problem (1.1) to the real line. 



46 JARRATT, LUND, AND BOWERS 

DEFINITION 2.1. Let D, be a simply connected domain in the complex z = x + iy 
plane with boundary ponts a # b (Fig. 1). Let 4 be a conformal map of D, onto the 
infinite strip Sd (2.4) with d(a)= - cc and d(6) = co. Let the inverse map of q5 be 
$ and define 

l-=($(t):-m<t<co} (2.13) 

and 

zk = thkh), k = 0, f 1, . (2.14) 

If the change of variable 

w(t) = CJI uJ”$(t) (2.15) 

is made in (l.l), the transformed problem, as shown in [7], takes the form 

-w”(f) + y,(t) w(t) = M$(t))(lCl’(t)Y 4th -cQ<<<<, 

lim w(t) = 0, 
(2.16) 

I+ +x 

where 

If the transformed problem is approximated by collocating the sine expansion (2.7) 
at the nodes ti = i/z, -A4 < i < N, the generalized eigenvalue problem (of the form 
(1.4)) results 

{ -(W2) I’2’+D(~,)) w=P%($‘)~)w (2.18) 

FIG. 1. The map qS and its inverse $ 
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with 

p’ = 
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. 
. . 

TI l2 3 

(2.19) 

Here m = A4 + N+ 1, D(r) is a diagonal matrix of dimension m x m with the (i, i)th 
element given by r(t,), w is an m x 1 vector with ith element w(t,), and p is the 
approximation of the eigenvalues A of the continuous Sturm-Liouville problem. 

The importance of known error bounds in the usefulness of a method has already 
been stated. The following Theorem 2.1 gives this error in the eigenvalue 
approximation. This theorem was stated and proven in [7] for the differential 
equation (1.1) transformed to the whole real line. The eigenvalues, however, of the 
transformed problem (2.16) and the Sturm-Liouville problem (1.1) are identical; 
hence the eigenvalue error bound given holds for the original differential equation 
without doing the transformation. Thus in practice the transformation need not be 
done. It merely facilitates the proof of the eigenvalue error bound. The generalized 
eigenvalue problem for the original Sturm-Liouville problem (1.1) is given by 

{ -(1/h2)z’~‘+o(-(~‘)-3’2((fj’)~“2)”+q/(~’)2)} z=pD(p/(f$‘)2)z (2.20) 

or 

AZ = /&S2z 

where 

23 = Qhd’)). 

The following theorem then holds. 

(2.21) 

(2.22) 

581/89/l-4 
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THEOREM 2.1. Let &, u0 be an eigenpair of the Sturm-Liouville problem (1.1). 
Assume that &+? u0 0 $ E B(S,) and there are positive constants ~1, /?, and C so that 

(2.23) 

r,= {l&t): iE(-co,0]}, rb= {$(t): iE(0, co)}. (2.24) 

Zf there is a constant 6 >O so that 1 y,(x)1 >6-‘, where 

Y,(X) = -(@b))-3’2 ((4’(x))-“‘)“+ (4’(x))r2 4(x) (2.25) 

and the selections h = (Ed/)“’ and N = [(a/b) Mj are made, then there is an 
eigenvalue pup of the generalized eigenvalue problem (2.20) satisfying 

1 pp - I,, 1 < K(&J1/* M312 exp( - (xd&4)“‘). (2.26) 

The inequality (2.26) holds for arbitrary eigenvalues A,. The factor & indicates 
that the smaller spectral values are approximated more accurately than the larger 
spectral values. 

The appropriate conformal map for (1.1) is determined by the interval (a, b) and 
the asymptotic behavior of the eigenfunctions. If the interval is finite the map used 
is 

$,(x)=ln E . 
( > 

(2.27) 

For the semi-infinite interval (0, co), there are two available maps. For the user this 
causes little problem as both typically work quite well. Careful selection may 
produce even further improvement for a given problem. The choice is described in 
[7] and will be further discussed in the appropriate comparisons of Section III. 
One must choose between 

and 

42(x) = in(x) (2.28) 

43(x) = ln(sinh(x)). (2.29) 

These maps and the terms of the discrete system (2.20) are given in Fig. 2. While 
(2.20) appears complicated, note that the terms for these maps simplify dramatically 
so that the implementation is straightforward. The last line of Fig. 2 corresponds to 
either the identity map or no map (due to (2.12)) depending on one’s point of view. 
It plays a role in problems on the entire real line whose solutions have the decay 
rates indicated in (2.9). 
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Interval 4 (@r’ 
-((f-W ((#‘)-‘;2)” 

Xk 

(0, b) 
(x - a)(b -x) 

b-a 

bekh + a 

ekh + 1 

BAx) = In(.w) X ekh 

(0, a) q&(x) = In(sinh(x)) tanh(x) 
4cosh2x-3 

4 cosh4 x 
In[ek” + JPW] 

t-m> a) 44(x)=x 1 0 kh 

FIG. 2. Terms for the discrete system (2.20). 

The implementation of the method has been fully described in [7]. All parameter 
choices are made as in Theorem 2.1. The determination of the quantity a when 
the left endpoint is finite comes from the Frobenius technique. Thus for the 
comparisons in Section III choose 

a=s+ -;, (2.30) 

where s, is the positive root of the indicial equation 

s(s- 1)-qa=o (2.31) 

and 

q,= lim (x-u)‘q(x). 
X-U+ 

(2.32) 

If the interval (a, b) is finite, then /I is determined similarly. In the case of the semi- 
infinite interval (0, co) the WKB method determines B. Over the interval ( - co, co) 
the WKB method also determines CL In the case that the eigenfunctions are sym- 
metric LX= /I. In this latter case (symmetry of eigenfunctions) advantage may also be 
taken of the form of the discrete system (2.20). This is described in Comparison 3.5. 
The comparison of the performance of various Galerkin methods to this sinc- 
Galerkin method is reported in detail in the following section. 
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III. COMPARISONS 

Galerkin schemes are well-known and often-used methods implemented for the 
numerical calculation of the eigenvalues of Sturm-Liouville problems. The purpose 
of this section is to compare the implementation, accuracy, and overall performance 
of the sine-collocation method (i.e., sine-Galerkin) to several of these alternative 
schemes. 

Because of the inherent differences in the methods (in some cases they are 
dramatically different), it is difficult to formulate in a precise manner a single 
criterion by which Method A may be declared “better” than Method B. If on one 
problem Method A performs better than Method B based on a single criterion, the 
roles of the methods may reverse on another problem. This role reversal can also 
occur in the assessment of the merits of the methods even on the same problem if 
one’s criteria changes. Hence in an attempt to avoid prejudicial comparions this 
section will include both quantitative criteria (size of discrete system, work required 
to assemble the matrices and the accuracy attained) and qualitative criteria (factors 
such as symmetry and matrix structure, effort involved in changing q, p or the 
interval (a, b), ease of implementation and applicability to a broad class of singular 
as well as regular Sturm-Liouville problems). 

Five examples are used in making the comparisons. The Fourier equation is used 
in Comparison 3.1 as representative of a regular Sturm-Liouville problem. Com- 
parison 3.2 is a singular problem (Bessel’s equation) on a finite interval (q(x) has 
a singularity at x = 0). The radial Schrodinger equation with the Woods-Saxon and 
harmonic oscillator type potentials is used in Comparison 3.3 and 3.4, respectively. 
These are representative of commonly occurring singular problems on the half-line 
(0, co). The Hermite equation is an example on the whole real line ( - co, co) and 
is discussed in Comparison 3.5. 

Several methods easily found in the literature are discussed in the comparisons. 
These include (i) the Rayleigh-Ritz (finite element) method with cubic spline and 
piecewise cubic Hermite basis functions, (ii) a spectral method with Chebyshev 
basis functions, (iii) a tau (spectral) method, and (iv) other mappings and/or 
domain truncation in combination with spectral or collocation methods. 

Comparison 3.1 (Fourier). 

-u”(X) = Au(x), O<x<l 

U(o)=u(l)=o. 
(3.1) 

This regular problem is useful in highlighting numerous aspects of eigenvalue 
approximation. Since the problem is so well behaved, the literature abounds with 
the application of many standard methods that work well. While many of these 
same schemes encounter difficulties on singular problems, this problem serves to 
emphasize the point that when results are acceptable, “the simpler the method is, 
the better.” 
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The parameters necessary to implement the sine method are SI = /I = i which 
yields h = rc/J%. Since tl = j, the choice A4 = N is also made. The map dr in (2.27) 
is used and the discrete system (2.20) reduces to (by Fig. 2) 

I -+p2)+D ; ( >I z=@((x(l-x))l)z. (3.2) 

The sine method applied to this problem has the advertised exponential rate of 
convergence of Theorem 2.1. In general, spectral methods will have an exponential 
convergence rate of O(exp( - l/h’)), v > 0. Finite element methods have an 
algebraic convergence rate of O(P), p a positive integer. Whereas the former is 
always more rapid than the latter (exp( - l/h”)/hP + 0 as h -+ 0), computationally 
the method with algebraic convergence may be superior for modestly small h. In the 
case of the sine method the convergence rate is 

O(W - (Mh))) = O(exp( -(n2/P)))) 

for the Fourier equation since d may be chosen to be 7c/2. The convergence rate for 
the Rayleigh-Ritz (finite element) method with linear spline basis functions is 
O(h2). The results for the first eigenvalue (using the linear spline basis) are given 
in Table I along with those for the sine method. The corresponding size of the 
matrices is included, where it must be remembered that the matrix A in (1.4) is full 
for the sine method and tridiagonal for this particular Rayleigh-Ritz method. 

The Rayleigh-Ritz method (even with algebraic convergence) is more accurate 
for small discrete systems. The sine method uses h = I-c/JN = x/J- 
(m = 2N+ 1 being the order of the coefficient matrix A in (1.4)) while the 
Rayleigh-Ritz method with linear spline basis uses h = l/m. Thus the sine method 
has exponential convergence rate O(exp( -nfi/2)) = O(exp( -ndw)/ 
(2$))) while the Rayleigh-Ritz method with linear spline basis has algebraic 
convergence rate 0( l/m’). The function 

f @) = & -~JT=G/(2,5) 

TABLE I 

Fourier Equation: Error in Computed Eigenvalues for the Rayleigh-Ritz Method 
with Linear Spline Basis and for the Sine Method 

Rayleigh-Ritz method Sine method 

True eigenvalue Matrix size Error Error Matrix size 

d 10 X 10 0.669 - 1 0.179 - 1 9x9 
20x20 0.184 - 1 0.299 - 2 19 x 19 
40x40 0.483 - 2 0.119-4 39 x 39 
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is bounded below by 1 for all m < 50. That is, the asymptotic exponential con- 
vergence rate of the sine method is not dominant until m 2 51. As can be seen in 
Table I the sine method error decreases below that of the Rayleigh-Ritz method by 
the time the system is 20 x 20. There is a splitting (described in Comparison 3.5) of 
the discrete system that essentially reduces the system size reported in the last 
column of Table I for the sine method to 5 x 5, 10 x 10, and 20 x 20. 

However, if the Rayleigh-Ritz method is used with cubic splines or piecewise 
cubic Hermite basis functions (these are O(@) methods) the exponential con- 
vergence rate of the sine method lags behind until m > 1194. In these cases the 
discrete system has bandwidth seven and results far superior to those in Table I are 
obtained, [ 11. 

As this indicates, for a Sturm-Liouville problem with eigenfunctions analytic in 
a domain in the complex plane containing the closed interval [a, b], the algebraic 
rate of convergence of low order Rayleigh-Ritz methods is sufficiently accurate. If 
however q and/or p have singularities at a and/or b (as in Bessel’s equation of 
Comparison 3.2) the algebraic convergence rate of the Rayleigh-Ritz method is no 
longer guaranteed. As will be seen (and justified by Theorem 2.1) the sine method 
maintains its exponential convergence rate in these singular problems. 

Comparison 3.2 (Bessel). 

-u”(X) + 
4n*-1 ( > ~ u(x) = h(x), 

4x2 
O<x<l,n21 

u(O)=u(l)=O. 
(3.3) 

This family (for varying parameter n) of singular Sturm-Liouville problems (due 
to the singularity in q(x) = (4n2 - 1)/(4x*) at x = 0) illustrates the differences in the 
comparison of methods when the problem is not regular. Theorem 2.1 guarantees 
the same convergence rate for this problem as for the Fourier equation when the 
sine method is applied. The parameters for the sine method are c1= n and /I = i 
which yield h = IT/JN, w h ere N = 2nM. The discrete system (2.20), with the map 4, 
in (2.27), takes the form 

[ 
-j$I(*)+D :+:(4n’- 1)(1-x)2 

( >I z=@((x(l-x))2)z. (3.4) 

Referring to (3.2), the only modification in the discrete system to arrive at (3.4) is 
a different diagonal matrix which is filled by point evaluations. The parameters CI 
and /I (governed by the possible high order root of the eigenfunctions near zero) 
dictate that fewer basis functions are required near zero and this difference is 
magnified as n increases (N = 2nM). Asymptotically the convergence rate is the 
same as in the regular Sturm-Liouville problem used in Comparison 3.1 
(Wexp( -nfiP))), h owever M (and thus the number of basis functions m) is 
much smaller. 
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Another method that takes advantage of the high order zero of the eigenfunctions 
is the tau method [ 131. In [9] the first eigenvalue of (3.3) for n = 7 is computed 
using the tau method with Chebyshev basis functions. They use the standard form 
of (3.3) which can be obtained by letting 

4x) = &Y(X). (3.5) 

This yields 

-Y”(X) - i Y’(X) + ; Y(X) = /2y(x), O<x<l,n>l 
(3.6) 

y(O)=y(l)=O. 

This form does not produce a symmetric discrete system, however it can be argued 
that the exponential convergence rate of the tau method offsets this drawback. 

When applying the tau method, two inner products defined by the integration of 
the Chebyshev basis functions against their first and second derivatives, respec- 
tively, are required. Therefore every element of this nonsymmetric discrete system 
requires two numerical quadratures, which must be calculated to at least the same 
accuracy as the method. This additional preliminary work detracts from this 
method. However the results in Table II are certainly satisfactory and are similar to 
those of the sine method. 

Here J,(x) denotes the Bessel function of order n. A “pole condition” is also 
described in [9] which improves the convergence of the tau method. This condi- 
tion, y’(O) =O, adds an additional equation to the discrete system. Gottlieb and 
Orszag point out that the pole condition must be applied properly so as not “to 
degrade significantly the accuracy of spectral computations.” In particular, for n = 1 
the pole condition must be modified as J;(O) # 0. Thus the pole condition does not 
have widespread applicability. However, for Bessel’s equation with n = 7 excellent 
results for the tau method with the pole condition are reported in [9]. 

Spectral methods using Chebyshev basis functions are used widely. When the 
problem is posed on an interval other than (- 1, 1 ), an intermediate mapping is 
commonly employed. Further discussion of this is included in Comparisons 3.4 
and 3.5. 

TABLE II 

Bessel Equation for n = 7: Error in Computed Eigenvalues for the Chebyshev Tau Method 
and for the Sine Method 

True eigenvalue 
2, =j:, , where 

J,(h)=0 

Spectral method Sine method 

Matrix size Error Error Matrix size 

122.907600204 18 x 18 3.650 - 0 0.152 -0 15 x is 
26 x 26 0.651 - 3 0.537-3 30x30 
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Comparison 3.3 (Woods-Saxon). 

-u”(x) + u(x) = A( 1 + e(“- ‘)“) -- ’ u(x), o<x<cc 
(3.7) 

u(0) = u( cc ) = 0. 

This is a singular Sturm-Liouville problem due to the semi-infinite domain, 
(0, 00). The coefficient function p(x) = (1 + ec.r-r)‘E)-’ also has singularities in the 
complex plane at z = r + s(2n + 1) xi. The eigenfunctions satisfy 

uA(x) - exp( -(x - Y)/E), X-+CC (3.8) 

and as the domain of (3.7) is (0, co) either of the maps & in (2.28) or C$~ in (2.29) 
are applicable (they both satisfy the bound in (2.23)). While the choice of map is 
not critical the reasoning which follows indicates a slightly more rapid convergence 
rate for d3 as opposed to & (note, however, that the discrete system for the choice 
CJ$ is simpler). The angle d for the sector denoted D, determined by c+& is limited 
by the coefficient singularity of p(x). Using the values Y = 5.086855 and E = 0.929853 
found in [ 171 the restriction on d for D, is d= Tan’(sn/r) N n/6. Since src > n/2 
the domain denoted D, for the map d3 is not restricted and so here the choice 
d= 7r/2 is suitable. Thus the convergence rate for the sine method with the map #z 
is (from Theorem 2.1) O(exp( --7c J&@)) while for the map d3 it is 
O(exp( -nm)) = O((exp( -~m))fi). The factor of fi is not dramatic; 
however, it can easily be detected in the numerical results. 

The parameters for the discrete system (2.20) with the map $3 are c1= $ and /I = 1 
which yields (with d = 742) h = n/n, where M= 2N. The system becomes (see 
Fig. 2) 

-++D 
4cosh3x-3 

4 cosh4 x 
+tanh2x)]z=pD(I~$~j,~)z. (3.9) 

Even here the differences in the discrete systems (3.2), (3.4), and (3.9) are merely 
different diagonal matrices tilled by point evaluations. 

A typical finite element treatment of (3.7) proceeds along the following lines. 
Select T > 0 and solve (3.7) with u(T) = 0 replacing u( co) = 0. The error incurred in 
the Rayleigh-Ritz method (with either cubic spline or piecewise cubic Hermite 
bases) for the perturbed but now regular Sturm-Liouville problem is O(h6), where 
h = T/n, n being the number of basis functions. This procedure was implemented in 
[lS]. The error due to the truncation of the domain to (0, T) is in [17] for both 
of the above-mentioned bases. There the piecewise cubic Hermite basis yielded a 
slightly better approximation. 

Once the Runcation level T has been selected these methods reduce to a 
generalized matrix problem of the form (1.4) where A and B have bandwidth seven. 
The matrix A is extremely simple to till since in (1.1) q(x) = 1. To fill B, a 
quadrature of the same order as that of the method employed (here O(h6)) is 
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required. Thus A and B each have 30 + 7(m- 8) nonzero entries when they are 
m x m. However, B involves considerable effort as each nonzero entry requires an 
integration of the form 

j 
T(l+ e(x-r)‘c)-’ H,(x) H,(x) dx, 
0 

(3.10) 

where Hi is the ith basis function. The sine method requires m point evaluations for 
each of A and B. Table III contains some of the results reported in [ 171. 

The accuracy of the Rayleigh-Ritz method is certainly more favorable if the 
criterion is solely accuracy for a given matrix size. This example does not, however, 
convey the necessary interaction between the choices of T and h for the 
Rayleigh-Ritz method. It appears that only the choice of h affects the error in the 
eigenvalue approximation. However, simply increasing the number of basis func- 
tions does not necessarily decrease the error. As is pointed out in [ 171 the error is 
governed by both the number of basis elements and the truncation level T and they 
give bounds on each. However, the crucial concurrent choice of both of these 
parameters needs further study. The next Comparion 3.4 more accurately depicts 
the impact that these parameter choices may have on the eigenvalue approximation. 

A convenience in the sine method is that to obtain an error of lo-” (remem- 
bering that th?e are asymptotic bounds), the right-hand side of (2.26) dictates 
equating e Pnk’2N’2 to lo-“. Thus conservatively, the choice of N given by 

N= 2(J ln 10J2 + 1 
L IT2 I (3.11) 

is sufficient. Although N in (3.11) is typically an overestimate (from Table III four 
digits of accuracy is attained with N= 9 whereas (3.11) with 6 = 4 predicts N= 18) 

TABLE III 

Radial Schrodinger Equation with Woods-Saxon Potential: Error in Computed Eigenvalues 
for the Rayleigh-Ritz Method with Piecewise Cubic Hermite Basis and for the Sine Method 

RayleighhRitz method Sine method 

True eigenvalue 

1.424333 

Truncation level 
and step size 

T= 12 
h= 1.2 

T= 13 
h= 1.0 

T= 18 
h = 1.2 

Matrix 
size 

18 x 18 

24 x 24 

28 x 28 

Matrix 
Error Error size 

0.34 - 5 0.590 - 3 19 x 19 

0.14-5 0.15-3 25 x 25 

0.35 - 5 0.818-4 28 x 28 
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the bound in (2.26) clearly indicates that increasing N (equivalently increasing 
m = M+ N + 1, the number of basis functions) will decrease the error in the 
estimate. 

The above mentioned points are not unique to the discussion of the Rayleigh- 
Ritz method with piecewise cubic Hermite basis versus the sine method. They 
arise in the comparison of finite element and collection methods in general when 
applied to problems on (0, co). The latter is, in general, more easily implemented 
due to the point evaluation used in defining the matrices of the discrete system 
(which may be full) while the former has a banded structure that may create a bit 
more work to fill. The finite element method involves a domain truncation whereas 
collocation, with a globally defined basis deals with the “analogue” of this difficulty 
via coefficient damping or mapping. More discussion of these techniques is included 
in Comparison 3.4. The important point is that the Galerkin method with sine basis 
functions has the exponential convergence typically associated with a spectral 
method as well as the ease of implementation in filling the discrete system via point 
evaluations typically associated with collocation. 

Comparison 3.4 (Harmonic Oscillator Type). 

-uU(x) + (x2 + yx-2) u(x) = h(x), o<x<cc 

24(0)=24(co)=0 
(3.12) 

This is a singular Sturm-Liouville problem due to both the infinite interval 
(0, co) and the singularity in the coefficient function q(x) =x2 + yxP2 at x = 0 (for 
Y # 0). The eigenfunctions may have singularities depending on the value of Y. If 
y = 2 (3.12) is the radial Schriidinger equation with harmonic oscillator potential 
which has been considered by numerous authors ( [7, 17, 181 in particular). For 
arbitrary y the eigenfunctions of (3.12) are given by 

u,(x) = x’(‘)y,(x) e-.+ (3.13) 

where 

and the y,.(x) satisfy 

r(y)=(l+J4y+l)/2 (3.14) 

-XY”(X) + 2(x2 -r(Y)) Y’(X) + (2r(y) + 1) -KY(x) = A(Y) v(x). 

The associated eigenvalues A(y) are given by 

qY)=wY)+ 1+4(j- l), j= 1,2, 3, . . . . 

(3.15) 

(3.16) 

Hence in the case of the harmonic oscillator, r(2) = 2, and the eigenfunctions (3.13) 
are entire functions. If y = 0, the eigenfunctions are a subset of the Hermite 
functions (Comparison 3.5); however, if y = $ the eigenfunctions have a branch 



bound (2.23)). When d3 is used 

as was done in Comparison 3.3, the discrete system (3.9) is obtained with tanh’ x 

replaced by (x2 + yx ~ *) tanh* x on the left-hand side and p(x) = (1 + e(.‘~ r)!e) ~ ’  

replaced by p(x) = 1 on the right-hand side. With y = 2 in (3.12), the solutions were 

computed in [7] using d3 since for this map 

d may be taken to be n/2. As pointed 
out in [7], this is the preferred method corresponding to the two maps since d is 
bounded above by rc/4 in the case of the map d2. 

However, for the purpose of illustrating the map $*, the discrete system (2.20) 
with #2 was used to approximate the eigenvalues of (3.12). The system becomes (see 
Fig. 2) 

(3.17) 

Again the modifications to arrive at this discrete system are simple point evalua- 
tions to fill the diagonal matrices. The parameters used are a(y) = r(y) - l/2, 
d= 7c/4, and h = n/(2 J’&&@), where N= [ln(a(y) Mh)/h + 11. 

The harmonic oscillator (y = 2) was reported in [ 171, where the Rayleigh-Ritz 
method was used with either piecewise cubic Hermite basis or cubic splines (similar 
to what was discussed in Comparison 3.3). Due to the much more rapid decrease 
of the eigenfunctions as compared to those of the Woods-Saxon potential, the 
truncation level T is considerably smaller for the harmonic oscillator. The matrices 
A and B in (1.4) again have bandwidth seven, however, with regard to filling 
these matrices, the roles of A and B have been reversed. The matrix A requires 
quadratures while B is simple to fill, since p(x) 3 1. Table IV contains some of the 
numerical results. 

Here and in the further numerical results of [17], the interconnected choice of 
T and h for this Rayleigh-Ritz method on the truncated domain is more clearly 
seen. Results for T = 7 are also given there and they are the same as for T= 6 
reported above. This indicates that the truncation level has increased to the point 
where the decaying solution is not significantly different (computationally) from 
zero at T. This choice of T (intimately related to the choice of h) requires careful 
estimations. The number N (the upper limit in the sum for the sine method) gives 
a corresponding largest gridpoint for the sine method of t, = eNh = 7.71. This in a 
vague way relates to the truncation level T used in the Rayleigh-Ritz method. 

A procedure which has the interval truncation of this Rayleigh-Ritz method and 
the globally defined basis functions of a spectral method was implemented on a 
modified form of (3.12) (with y = 0) in [lo]. The technique for (3.12) is to truncate 
the interval to (0, T) and assume an approximate solution of the form 

u,dx) = : c, T,W)), (3.18) 
,=o 
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TABLE IV 

Radial Schrodinger Equation with Harmonic Oscillator Potential (y = 2): 
Error in Computed Eigenvalue for the Rayleigh-Ritz Method with 

Piecewise Cubic Hermite Basis and for the Sine Method 

Rayleigh-Ritz method Sine method 

True eigenvalue 
Truncation level 

and step size 
Matrix 

size Error Error 
Matrix 

size 

9 T=5 
h =0.5 

18x 18 0.39 - 3 0.914 - 2 19x 19 

T=6 
h=0.5 

22 x 22 0.37 - 3 0.204 ~ 2 24x24 

T=5 
h = 0.25 

T=6 
h = 0.25 

38 x 38 0.31 -4 0.105-3 34x34 

46x46 0.91-5 0.215-5 41 x 41 

where 

x(x)=2x/T- 1 (3.19) 

and 

T,(5) = cos(jcos -l(t)). (3.20) 

T, is the jth Chebyshev polynomial of the first kind. Note that (3.19) maps the 
domain (0, T) to (- 1, 1) so that the Chebyshev basis may be used. This technique 
of domain truncation was satisfactory; however, [lo] favored algebraically map- 
ping the semi-infinite interval to ( - 1, 1) directly. A mapping such as 

x(x)=2 & -1 
( > 

for a contant L accomplishes this and thus no truncation of the infinite interval is 
necessary. Both of these approaches have merit. A comparative study of domain 
truncation versus algebraic mapping for the expansion of certain model functions 
was reported in [3]. That study favored domain truncation in the case of entire 
functions (for example, when y = 0 or 2 in (3.12)) and algebraic mapping in the case 
of singular functions (for example, when y = i in (3.12)). Each method works well 
as a spectral method and the choice is problem dependent. As is to be expected the 
sine method works for the singular case, y = a, and results are reported in [ 141. 
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Comparison 3.5 (Hermite). 

-u”(X) + (x2/4) u(x) = pi(x), --co<x<co 
(3.22) 

u(-m)=u(m)=O. 

The computation of the eigenvalues of the Hermite equation was dealt with in 
[lo] by considering the even and odd eigenfunctions separately. The eigenvalues 
are ,u~ = n + f and the corresponding eigenfunctions are the Hermite functions. 
These are even or odd functions as n is even or odd. To calculate the odd eigen- 
values it is only necessary to solve 

-u”(t) + (t2/4) u(t) = 112,1- 1 u(r), o<t<m 

u(0) = 0, u( cc ) = 0. 
(3.23) 

Setting t = 4x reduces (3.23) to the form (3.12) where I,,-, = 2~,, ~, = 4n - 1 for 
n = 1, 2, 3, . . . Similarly the even eigenvalues may be calculated from 

-u”(t) + (t2/4) u(t) = /&U(f), o<t<c@ 

u(0)=c,u(00)=0, 
(3.24) 

where the eigenfunctions are normalized by u(0) = c. As in Comparison 3.2 these 
special conditions (there the pole condition, here even and odd eigenfunctions) are 
problem dependent. This appears to be a considerable amount of work which 
could be avoided by merely dealing directly with the Hermite equation (3.22). This 
problem, as well as others that have symmetric potential and weight functions, may 
be treated as just described in order to reduce the computational work. Due to the 
Toeplitz structure of the system (2.20) the sine-collocation method applied to (3.22) 
admits a splitting in the discrete system analogous to the even and odd eigenfunc- 
tion splitting of (3.22) cited above. To see this, use centered sums (M= IV), where 
m = 2M+ 1 (M= N) and write (see Fig. 2) in the form 

A= -~z~2)+Kl+D(r). (3.25) 

where K is a constant and r( -x) =r(x) in the diagonal matrix D(r). Here 
r(x) = q(x)/(&(x))2. The matrix in (3.25) admits the representation 

where the subscripts denote the block sizes, Ig’ is the M x M matrix Zc2) as in 
(2.19)~ c,, l consists of the first M elements of the (A4 + 1 )th column of I:’ and 
L,w is the Mx M portion of I:’ . m its lower left-hand corner. The A4 x A4 matrices 

D T (r) = diag(r(x + k)) (3.27) 
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are connected by the M x M matrix 

J= 

via 

D-(Y)= JD+(r) J, 

(3.28) 

(3.29) 

since r is an even function and x Pk = - xk. 
The m x m orthogonal matrix 

( 

ZM OA4xl 1, 
Q=-$ p?;;) of, (o;;,)’ 

block diagonalizes A as follows: 

( 

Z(‘) - JL 

Q’AQ=$ (:6Mx,);” 

0 MXl 

n2/3 Jzz 1)’ 

OM &,, , I$‘+ JL, 

( 

D-(r) OMxl OM 

+KZm+ (0,x,)’ 40) (O,x,Y . 

1 

(3.30) 

OM OMxl D+(r) 

Hence the spectrum of A is the same as the union of the spectrums of the two 
matrices 

-JLM)+KZM+D-(r) (3.31) 

and 

In the case that p in (1.1) is symmetric (it is identically one in (3.22)) the eigen- 
values of A 7 are the approximate eigenvalues of the continuous problem. In the 
case that p is nonconstant but symmetric, this follows from (3.29) with r replaced 
by P. 

This splitting would be aesthetically complete if one could assert that the spec- 
trums of A- and A+ interlace one another. Such a result implies for example that 
the approximate smallest eigenvalue of the continuous problem is contained in the 
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spectrum of A +. Whereas this is the authors’ experience in numerical computation, 
an analytic statement along these lines does not appear to be an elementary argu- 
ment. Such techniques as Weyl’s separation theorem [21] give only crude estimates 
due to the large size of A + (or A -) relative to the size of A. 

Before turning to the computations for the Hermite example (3.22), note that the 
splitting that occurs in the first matrix on the right-hand side of (3.30) is inde- 
pendent of the problem. This statement remains true with the addition of ICI in the 
case of problems on (a, b) and (0, co) (d(x) = In(x)) since, from Fig. 2, K may be 
taken to be a. The final matrix in (3.30) is obtained for the finite interval (-a, a) 
for symmetric q and p, since (3.29) follows from xk = a(e”” - 1 )/(e”” + 1) = -x Pk. 
Hence the splitting in (3.30) trivially applies to the Fourier example in 
Comparison 3.1 and the matrix sizes reported in Table I can effectively be cut in 
half. A less trivial example is provided by the Chebyshev example in [7]. In the 
case of the half-line any such splitting would require very special properties of the 
functions q and p. 

In Table V below the sine method is used in conjunction with the splitting 
described above. The results listed under Chebyshev are taken from [lo] where an 
n-term Chebyshev expansion was used for (3.22) in conjunction with the algebraic 
map 

2x' 
x(x) = ~ - 

x2+L2 1, (3.33) 

where L is a scaling parameter. Here, similar to Comparison 3.4, the interconnected 
choice of L and n needs to be carefully addressed. Based upon accuracy for matrix 
size the sine method does somewhat better, though both methods are clearly power- 
ful techniques for this problem. 

TABLE V 

Hermite Equation: Error in Computed Eigenvalues for the Chebyshev Method and for the Sine Method 

Chebyshev method Sine method (with splitting) 

True eigenvalue 
Matrix Matrix size 

L size Error Error (M+l)x(M+l) 

1, = 912 4 20x20 0.29 - 3 
4 30x30 0.36 -1 O.lO- 1 5x5 
8 10 x 10 0.68 - 1 
8 20 x 20 0.27 - 4 0.12-4 9x9 
8 30 x 30 0.15-8 

16 20 x 20 0.29 - 6 0.30 - 9 12 x 12 

16 30 x 30 t 

Note. The t indicates that the eigenvalue was accurate to all eleven digits reported in [lo] 
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Another algebraic mapping for the problem (3.22) is 

x(x) = gk. (3.34) 

Both maps (3.33) and (3.34) directly map (-co, CO) to (- 1, l), where the 
Chebyshev basis may be used. The map (3.34) is analyzed in [4] wherein a detailed 
study of the rational basis { Tj(x/(x2 + L2)‘12)} 1s undertaken. Similarly the rational 
basis { T,((x - L)/(x + t))} arising with the map (3.21) is studied in [S]. These 
rational functions have surfaced in many settings. They were used in connection 
with quadratures in [ 161. Later [ 111 used them in rational function quadratures, 
while as distinguished elements of certain finite orthogonal sets they were studied 
in [6]. 

ACKNOWLEDGMENTS 

The authors appreciate a number of perceptive comments from the reviewers which significantly 
clarify the various comparisons. Many thanks to Ms. Rent Tritz whose exceptional patience, great 
diligence, and remarkable technical skill benefits us all in these endeavors. 

REFERENCES 

1. G. BIRKHOFF, C. DEBOOR, B. SWARTZ, AND B. WENDROFF, SIAM J. Numer. Anal. 3, 188 (1966). 
2. J. F. BOTHA AND G. F. PINDER, Fundamental Concepts in the Numerical Solution of Differential 

Equations (Wiley, 

J. Differentia8N0537  Tw3  Tr -0.0807  Tc 0oNE0695  Tc 0.0939  T4au.87523.0537  Tw3  Tr TD 3  Tr -0.04D Tr 14.537145  Tw (Differentia8N0537  Tw3  Tr -0.0807.85  Tc -0.0343 4DTD 3  Tr -04R8mia8N0537  Tw3 -0.0906  Tc 0.1035D0537 3 7360.8F3T8   Tc 0.0587  Tw (BIp4.5T
0.875 0 0 1 104.64 302.88  Tm
3 85t188 ) Tj
035Tj
0  TYork.0906  Tc 0.12.020
0  Tr ET
BT
0.j
0 99 Tc 0.10351BB7e8B719830  TD 3  Tr 0.03  Tc -0.0343  Tw (F. ) T29. ) Tj
0  Tr ET
BT
0.8667 0  Tr -0.1389  Tc 0.1587 INDER, FundamentaTr 7. Numer. 


